Efficient Spectral-Galerkin Methods IV. Spherical Geometries

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Spectral-Galerkin Methods IV. Spherical Geometries

Fast spectral-Galerkin algorithms are developed for elliptic equations on the sphere. The algorithms are based on a double Fourier expansion and have quasi-optimal (optimal up to a logarithmic term) computational complexity. Numerical experiments indicate that they are significantly more efficient and/or accurate when compared with the algorithms based on spherical harmonics and on finite diffe...

متن کامل

Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries

We present in this paper several extremely efficient and accurate spectral-Galerkin methods for secondand fourth-order equations in polar and cylindrical geometries. These methods are based on appropriate variational formulations which incorporate naturally the pole condition(s). In particular, the computational complexities of the Chebyshev–Galerkin method in a disk and the Chebyshev–Legendre–...

متن کامل

Adaptive Spectral Galerkin Methods with Dynamic Marking

The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the Dörfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a superlinear relation between consecutive...

متن کامل

Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients

Efficient Spectral-Galerkin algorithms are developed to solve multi-dimensional fractional elliptic equations with variable coefficients in conserved form as well as non-conserved form. These algorithms are extensions of the spectral-Galerkin algorithms for usual elliptic PDEs developed in [24]. More precisely, for separable FPDEs, we construct a direct method by using a matrix diagonalization ...

متن کامل

Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications

We construct in this paper two efficient spectral-Galerkin algorithms for solving systems of n coupled second-order equations. The computational complexity of these algorithms is essentially n times the cost of solving one second-order equation. We present numerical results which illustrate the accuracy and flexibility of these algorithms, as well as several interesting and challenging applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 1999

ISSN: 1064-8275,1095-7197

DOI: 10.1137/s1064827597317028